Removal of Reactive Dyes from Wastewater using Cyclodextrin Functionalized Polyacrylonitrile Nanofibrous Membranes
author
Abstract:
Electrospinning of nanofibers with cyclodextrin (CD) is attractive because the produced fibers can potentially increase the efficiency of nanofibrous membranes by facilitating the complex formation with organic compounds and high surface area of the nanofibers. In this work, polyacrylonitrile (PAN) nanofibers functionalized with β– cyclodextrin (βCD) during an electrospinning process were used to treat a reactive dye wastewater stream by dynamic method. It was found that the dye removal efficiency was increased from 15.5% for PAN to 24% for PAN/βCD nanofiber mats. The low efficiency of PAN/βCD membranes was due to the decrease in the βCD content during the filteration process because of the high solubility of βCD in aqueous solutions. By crosslinking βCD through a polycondensation process, the PAN nanofibrous membranes containing βCD polymer (βCDP) were prepared and used for filtration. Compared with PAN nanofibers, it was found that the dye removal efficiency improved more than two times by using PAN/βCDP nanofibers. In such circumstances, due to the decrease in the water solubility of βCDP, the βCDP content in nanofibers didn’t change during filtration; therefore, the dye removal efficiency of the PAN/βCDP nanofibers was higher than that of the PAN/βCD ones. The XRD results also showed that inclusion complexes between the βCD cavities and dye molecules were formed.
similar resources
Removal of reactive dyes from textile wastewater using sonochemical process: effective parameters study
This article has no abstract.
full textremoval of reactive dyes from textile wastewater using sonochemical process: effective parameters study
0
full textThe Application of Functionalized Pillared Porous Phosphate Heterostructures for the Removal of Textile Dyes from Wastewater
A synthesized functionalized pillared porous phosphate heterostructure (PPH), surface functionalized phenyl group, has been used to remove the dye Acid Blue 113 from wastewater. X-ray photoemission spectroscopy XPS and X-ray diffraction (XRD) were used to study its structure. The specific surface area of this was 498 m²/g. The adsorption capacities of PPH and phenyl surface functionalized (Φ-PP...
full textEstrogenic hormone removal from wastewater using NF/RO membranes
This paper investigates the separation process of two estrogenic hormones, estrone and estradiol, using eight commercial NF and low pressure RO membranes. The results indicate that the separation mechanism of estrone and estradiol in membrane filtration processes is similar. While estrogenic hormone retention by more porous membranes decreases with decreasing adsorption and the subsequent reten...
full textRemoval of Reactive Green 19 dye from synthetic wastewater using electrocoagulation and aluminum electrodes
Textile dyeing is considered to be one of the major industrial sources of high rates of organic and aromatic compounds. Conversely, these compounds have become a significant environmental problem. Many methods have been investigated for color removal from dye-containing wastewater. In this research, the efficiency of the electrocoagulation (EC) process with aluminum electrodes in the removal of...
full textAcid Dyes Removal from textile wastewater using waste cotton activated carbon: Kinetic, isotherm, and thermodynamic studies
The present study aims at investigating the potential of activated carbon AC prepared from waste cotton fiber for the removal of Acid Dyes from aqueous solutions. The prepared activated carbon was characterized by pore structure analysis, Fourier transforms infrared spectroscopy FTIR. Batch adsorption studies were carried out and the effect of experimental parameters such as pH, initial dye con...
full textMy Resources
Journal title
volume 4 issue 1
pages 45- 52
publication date 2016-03-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023